
Taking the hol out of HOL

Nancy A. Day
Oregon Graduate Institute

Portland, OR, USA
nday@cse.ogi.edu

Michael R. Donat and Jeffrey J. Joyce
Intrepid Critical Software Inc.

Vancouver, BC, Canada
{Michael.Donat, Jeffrey.Joyce}@intrepid-cs.com

Abstract

We describe a systematic approach to building tools
for the automated analysis of specifications expressed
in higher-order logic (hol) independent of a conven-
tional, interactive theorem proving environment. In
contrast to tools such as HOL and PVS, we have taken
“the hol out of HOL” by building automated anal-
ysis procedures from a toolkit for manipulating hol
specifications. Our approach eliminates the burden of
skilled interaction required by a conventional theorem
prover. Our lightweight approach allows a hol specifi-
cation to be used for diverse purposes, such as model
checking, and the algorithmic generation of test cases.
After five years of experience with this approach, we
conclude that by decoupling hol from its conventional
environment, we retain the benefits of an expressive
specification notation, and can generate many useful
analysis results automatically.

1 Introduction

Formal methods have come a long way. Industrial
standards such as IEC 61508, and DO-178B include
explicit references to the use of formal methods as a
means of increasing confidence in safety-related sys-
tems. Formal methods add precision and checkability
to various aspects of the system development process.

A decade ago, there was a wide chasm between
specialized automated methods such as model check-
ing [6], specification-intensive methods such as the use
of Z [33], and general proof-based reasoning found in
tools such as HOL [16]. The input notations of the
analysis tools matched the analysis capabilities of the
tool. For example, the SMV [26] notation describes
finite state machines, whereas the use of higher-order
logic (hol)1 as the specification language of PVS cor-
responds to the intended use of PVS [28] as an inter-
active theorem prover.

Progress is being made rapidly on bridging this
chasm and uniting the capabilities of the various tools

1We will use “hol” or “Hol” for higher-order logic by itself,
and “HOL” to refer to the HOL theorem proving system.

under one roof. For example, the SCR toolset in-
cludes a consistency checker, a simulator, and links to
a model checker, and a theorem prover [3, 20]. PVS
has integrated a number of automated decision pro-
cedures [27]. Most of these examples are, however,
either application-specific such as the SCR toolset, or
start from a heavyweight theorem prover.

We have been exploring a different point in the de-
sign space of these combined systems. For the past
five years, in an industry/university collaborative re-
search project, we have used hol as a specification no-
tation and applied automated analysis techniques such
as refutation-based approaches (i.e., those that gen-
erate counterexamples), and test generation to these
specifications. We have taken “the hol out of HOL”
by building these automated procedures on top of just
a parser and typechecker to eliminate the burden of
skilled interaction required by a conventional theorem
prover.

The combination of hol with automated analysis
may seem crippled from the beginning: we do not have
all the tools we might need to work with our specifica-
tion. However, our experience shows that less power is
often better. The expressiveness of higher-order logic
allows us to embed more familiar notations within hol.
The difficulties for new users come when the only tool
support available has a high learning curve, and they
struggle to understand the feedback the tool provides
them about their specification. We offer a solution
that lessens the learning curve, delaying the need to
use a theorem prover until the problem requires it and
the user is ready for it.

In Sections 2, and 3 we present our reasons for
choosing to work with higher-order logic outside of
a theorem proving environment. In Section 4, we de-
scribe our toolkit, a collection of cooperating utilities
that manipulate hol expressions in “truth-preserving”
ways, i.e., the result of every transformation could also
have been produced by a formal derivation using infer-
ence rules in HOL. In Section 5, we describe how the
blocks are used in combination to construct analysis
procedures such as symbolic model checking, and test
generation.

Unlike our related presentations of this project [8,
9, 10, 14, 23], in this paper we focus on the capabili-
ties of the tool and how it is engineered. This paper
is intended to be a high-level view of the architecture
of our analysis tool, illustrating how our toolkit facil-
itates significant reuse of components for diverse ap-
plications such as test generation and model checking.
We have also created new analysis methods such as
constraint-based simulation. Our focus on automated
analysis compels us to provide the user with control
of performance factors such as BDD [4] variable order.
We have also created methods that allow us to main-
tain the information necessary to produce readable,
traceable results given in terms of the original spec-
ification. References are provided to more technical
descriptions of the components of our toolkit.

By providing a lightweight interface between a
general-purpose notation and automated analysis, we
offer a middle ground between special-purpose anal-
ysis tools and general-purpose theorem provers. Our
goal is to bring the power of a range of automated
analysis techniques to specifiers without sacrificing
suitability and expressiveness of notation.

2 Why higher-order logic?

Initially, we chose higher-order logic as a specification
notation independently of consideration for tool sup-
port. Our notation S [23] is a syntactic variant of
the object language of the HOL theorem proving sys-
tem. S was also influenced by Z, in that it includes
constructs for the declaration and definition of types
and constants. It was developed to support the prac-
tical application of formal methods in industrial scale
projects. In this section, we explain our reasons for
choosing to work with S.

First, S is a general-purpose notation; it does not
impose any particular style of specification. We have
used it to capture a stimulus-response style of specifi-
cation, as well as embedding other notations such as
statecharts [17], and tables in S [2, 9]. By placing spe-
cialized notations within a general-purpose environ-
ment, we can take advantage of many general-purpose
features such as parameterization, and re-usable aux-
iliary definitions and infrastructure. In the specifica-
tion of an aeronautical telecommunications network
(ATN) written in our embedded statecharts style, we
witnessed these benefits, which reduced the specifica-
tion effort, and resulted in a more concise and read-
able specification [2]. Also, we do not have to repeat
the effort of building analysis tools for particular no-
tations. Once a notation is embedded in S, many of
our analysis tools can be applied.

Second, S is a logic. We have found that uninter-
preted constants in a logic play a key role in allowing

us to match the level of abstraction found in require-
ments specifications. Joyce has called uninterpreted
constants, “a modern-day Occam’s razor”2 and points
out their value in filtering non-essential details and
in improving the readability of the specification [25].
Uninterpreted constants can be used to represent ele-
ments that have meaning to domain experts but whose
definition is irrelevant for analysis of a requirements
specification. For example, many air traffic control
specifications depend on the “flight level” of an air-
craft. The details of how the flight level is determined
may be irrelevant for analysis of some aspects of the
system. The calculation of the “flight level” can be
captured by an uninterpreted constant. Analysis re-
sults produced for a specification hold for any inter-
pretation of the uninterpreted constants. While a fi-
nal specification should be complete including defini-
tions for all the constants, the use of uninterpreted
constants during the process of writing a specification
allows some results to be produced without having to
specify all of the details.

Furthermore, a logic contains quantifiers, which of-
ten allow the expression of formal requirements to
more closely correspond to their expression in natu-
ral language. Quantified statements can be used to
capture domain knowledge that describes the environ-
ment of the specification. The ability to use a quanti-
fier eliminates the need to spell out all instances where
the environmental assumption is relevant.

Finally, S is expressive; while we will never be able
to prove automatically every property of our specifi-
cations, our notation is unlikely to limit adding more
automated analysis capabilities as they are developed.

3 Why not use a theorem
prover?

In our approach, we have focused on automated anal-
ysis of our specifications. There have been a vari-
ety of successful efforts to combine theorem provers
with automated decision procedures, such as PVS and
Forte [1]. Our experience with HOL-Voss [24] suggest
that having the theorem prover control the link to the
decision procedures is not the optimal approach for
automated analysis.

First, the infrastructure of the theorem prover is un-
necessary for automated analysis and makes the ap-
proach clumsy and intimidating to the novice speci-
fier. These difficulties are a factor in industry’s resis-
tance to formal methods. For example, we particularly
wanted to avoid the need to learn a meta-language to

2The Aristotelian principle, often attributed to William of
Occam (1300-1349), that the simplest theory that fits the facts
of a problem is the one that should be used.

accomplish the specification task. Therefore, we made
S the input language to our tool, and have very simple
commands to invoke our analysis procedures. A sec-
ond example is that rewriting by means of tactic appli-
cation was used for expansion of definitions in HOL-
Voss. This step was different for each specification an-
alyzed. We have shown that an automatic technique,
called symbolic functional evaluation, is sufficient for
this task and requires no user intervention.

Second, theorem provers are verification-based anal-
ysis tools. The output of a theorem prover is the con-
firmation of a conjecture. Often, more useful results
of analysis are either evidence that refutes an inter-
pretation of the requirements, or truth-preserving re-
arrangements of the specification in order to distill
atomic behaviour. Refutation-based techniques pro-
duce a variety of results other than just theorems.
For example, when analyzing a table for inconsis-
tency, refutation-based techniques can clearly isolate
the source of the inconsistency. Consequently, it is
easier to interpret the result of a successful refutation
attempt than a failed verification attempt. In using
formal methods for an independent validation and ver-
ification effort, Easterbrook and Callahan abandoned
the use of PVS to carry out completeness and consis-
tency checks because of the difficulty of determining
the source of an inconsistency in a failed proof [15].

Third, the results should be expressed in terms of
the original specification. In contrast to our approach,
translating the specification for input to a specialized
decision procedure often results in output in terms of
the translated version.

Fourth, most theorem provers do not currently pro-
vide hooks to control analysis parameters such as BDD
variable order. To work with large examples, control
over these parameters is absolutely necessary.

Theorem provers definitely have a role to play in
the analysis of complex systems. We advocate an ap-
proach that complements the use of theorem provers
because we work with the same notation. Novice users
and experts can work side-by-side. We have a tool
that translates our S specifications to input for the
HOL theorem prover [23].

4 The Toolkit

Our toolkit consists of techniques that manipulate S
expressions in truth-preserving ways. In this section,
we describe the collection of techniques that are com-
bined to build analysis procedures such as symbolic
model checking. Figure 1 captures the architecture of
our tool. In addition to the specification and com-
mands, the input of semantic definitions allows the
specifier to work with notations, such as statecharts,
embedded in S.

semantic

Model Checking
Symbolic CTL

Simulation

Satisfying
Assignment

Quantification

Variables
Current and Next

Distinguishing

Checking
Interval

Legend:
calls

Abstraction to
Propositional

Logic

Toolkit

commands

Parser /
Typechecker

Completeness,
Consistency,

and Symmetry
Checking

Generation

definitions

specification
hol

Codifying
Domain

Knowledge

Test

Analysis
Procedures

Rewriting

Symbolic
Functional
Evaluation

Figure 1: Architecture

The representation of S expressions is encapsulated
in an abstract datatype. The representation is cre-
ated through the process of parsing and typechecking,
common to all analysis procedures. Analysis proce-
dures consist of a sequence of calls to the toolkit ele-
ments, which manipulate S expressions to accomplish
the analysis task. Each of the toolkit elements are in-
dependent allowing them to be used systematically in
combination to implement analysis procedures. Also
the separation of concerns allows each toolkit element
to evolve, and additional elements be added, without
affecting other components of our tool.

Some of the techniques, such as abstraction to
propositional logic, can also be found in tools such
as PVS. Others, such as symbolic functional evalua-
tion (SFE) for expanding S expressions, we developed
because we wanted to be independent of a theorem
proving environment. In some cases, we rely on syn-
tactic conventions for particular styles of specification.
For example, we distinguish between the stimuli and
responses for test generation based on vocabulary con-
ventions.

We also provide user access to performance tuning
for some of these automated techniques. For example,
while SFE is automatic, the user can control the depth
of evaluation. For BDD-based analysis, we provide a
way to input a variable order.

4.1 Symbolic Functional Evaluation

A specification consists of a collection of constant def-
initions, and declarations of types and constants. If
we are using an embedded notation, then a set of se-
mantic definitions is added to this collection. Often,

the first step in analysis is to expand all of these defi-
nitions to determine the meaning of the specification.

Symbolic functional evaluation [8] (SFE) is a tech-
nique that we developed to “evaluate” or unfold S ex-
pressions, i.e., carry out the logical transformations of
expanding definitions, beta-reduction, and simplifica-
tion of built-in constants in the presence of quantifiers
and uninterpreted constants. It extends mechanisms
from functional language evaluation to carry out lazy
evaluation of S expressions. Unlike using quote sym-
bols in a language such as Lisp, SFE gives the user
control over the depth of evaluation. We illustrate
this control with the following declarations and defi-
nitions:

z1 : num;
f1, f2, f3 : num→ num;
z2 = f1(z1);
z3 = f2(z2);
f4(a) = f3(a);

The constants z1, f1, f2, and f3 are uninterpreted.
When we evaluate the expression f4(z3), we can in-
struct SFE to evaluate to one of three levels of eval-
uation. At the level of “complete” evaluation, it is
expands all the definitions and returns the expres-
sion f3(f2(f1(z1))). At the “point of distinction” level,
SFE stops after it determines the tip of the expression
is an uninterpreted function, and returns f3(z3). One
further level called “evaluated for rewriting” proved
useful and evaluates the arguments of an uninter-
preted function at the tip to the point of distinction.
In this case, it would return f3(f2(z2)).

The choice of level of evaluation is linked with the
choice of abstraction to be used for the automated
analysis. For example, when abstracting an expres-
sion to propositional logic (see Section 4.3), the point
of distinction level is most appropriate because any
details revealed by evaluation are lost in abstraction.

Our implementation benefits from the use of struc-
ture sharing in the representation of expressions, and
caching of results.

SFE can be used to carry out symbolic simulation
of specifications of hardware circuits as has been done
previously in theorem provers, e.g., [34, 35].

SFE provides functionality similar to that of PVS’s
experimental ground evaluation, which translates a
subset of PVS into Lisp for evaluation [32]. How-
ever, SFE works for any expression in higher-order
logic, including uninterpreted functions, and quanti-
fiers. Our levels of evaluation provide a systematic
means of controlling evaluation of these symbolic ex-
pressions. A second difference is that we use SFE as
the first step in the analysis process. In PVS, evalu-
ation currently is stand-alone and does not affect the
proof process. For our purposes, SFE is sufficiently
fast for large specifications, however the PVS ground

evaluation is no doubt faster using existing Lisp eval-
uation and destructive updates where possible.

4.2 Rewriting

Once a specification has been sufficiently unfolded,
several analyses require logical manipulation of the
resulting S formula. A rewrite toolkit component is
useful for performing this task. For example, the fol-
lowing set of rewrite rules could be used to rewrite a
specification so that negation (¬) is only applied to
predicates:

∀X,Y.X ⇒ Y = ¬X ∨ Y
∀X,Y.¬(X ∧ Y) = ¬X ∨ ¬Y
∀X,Y.¬(X ∨ Y) = ¬X ∧ ¬Y

∀X.¬¬X = X
∀P.¬∀x.P (x) = ∃x.¬P (x)
∀P.¬∃x.P (x) = ∀x.¬P (x)

Some analysis algorithms can be implemented as
a series of rewriting operations. An example is the
derivation of tests from an S specification using a series
of sets of rewrite rules [10, 13]. Implementing the test
generator using rewriting is a better way to preserve
logical soundness than an implementation as a series
of ad-hoc manipulations.

Our lightweight rewrite system differs from some
well-known rewrite systems, such as the one found in
HOL. For performance reasons, our rewrite system co-
operates with other means of simplification such as
evaluating expressions with concrete values. The user
of the rewrite system must ensure that each set of
rewrite rules is confluent – otherwise, rewriting may
not terminate. The user must also ensure that the
rewrite rules are themselves sound. The checking of
the rules need only be performed once as part of the
development of an analysis procedure, and can be ac-
complished using a theorem prover such as HOL or
PVS.

Rewrite rules are stated as universally quantified
equalities, e.g., ∀x.E1(x) = E2(x), where x is a vec-
tor of variables. For rules specifying rewrites involv-
ing quantifiers and lambda abstraction: 1) variable
capture is avoided using alpha conversion; and 2) if
variable release occurs, the rewrite fails.

The concept of variable release is the opposite of
variable capture. During rewriting, if a variable is
quantified in an expression matching the left-hand
side of the rewrite rule and is not quantified in the
corresponding instance of the right-hand side, vari-
able release has occurred. For example, applying the
rewrite rule ∀P,Q.(∀x.P ∨ Q) = ((∀x.P) ∨ Q) to
∀x.f(x) ∨ y succeeds. However, applying the same
rule to ∀x.f(x)∨ g(x) fails because the x of g(x) is re-
leased, i.e., x is no longer quantified because it was free

in Q. The rewrite system also recognizes alpha equiv-
alence, e.g., (λx.E(x)) = λa.E(a). By failing rewrites
in which variable release occurs and recognizing alpha
equivalence, we are able to describe as rewrite rules
quantifier manipulation that requires conversions in a
theorem prover.

The rewrite system provides routines for applying
a single rewrite to an expression, or to an expression
and all its subexpressions. Sets of rules can also be ap-
plied. The depth of a rewrite operation can be limited
by providing a call-back function that examines the
current subexpression and signals the rewrite system
to continue with this subexpression or go no deeper.

4.3 Abstraction to Propositional Logic

By abstracting our specifications to propositional
logic, we can produce conservative analysis results au-
tomatically. As in Rajan [29], we decompose our S ex-
pression based on the logical operators of conjunction,
disjunction, and negation. The fragments are assigned
unique Boolean variables with alpha-equivalent subex-
pressions matched to the same variable. We maintain
a table matching the fragments to their Boolean vari-
ables to apply and reverse this process.

We also deal with enumerated types so that they are
represented by multiple, related Boolean variables as
in Ever [22]. Sections 4.5 and 4.7 discuss elements of
the toolkit that complement this abstraction process.

We represent the expressions built from the Boolean
variables using BDDs. A key to making this process
efficient is to cache the match between S expressions
and BDD expressions. Once a BDD expression is cre-
ated, an analysis procedure can manipulate it with
the usual BDD package operations such as negation,
conjunction, and quantification.

BDD variable order affects the size of the BDD rep-
resentation of our S expression. For small examples,
it is sufficient to create the BDD variable as needed
in the abstraction process, but for larger examples, a
better method was required. In PVS, it is possible
to request that dynamic variable order be carried out
within the BDD package doing propositional simpli-
fication [31]. But, we found it critical to have direct
support for providing the abstraction process with a
BDD variable order to allow us to reuse a good order,
as well as store and manipulate abstractions of ex-
pressions. Furthermore, we wanted the variable order
stated in terms of expressions of the specification, not
in terms of the Boolean variables that are substituted
for those expressions during abstraction.

Therefore, we developed a way of supplying a
variable ordering for BDDs as a list of S expres-
sions. There are three types of substitutions: a single
Boolean variable matched with a Boolean S expres-

sion, partitions discussed in Section 4.5, and enumer-
ated types. Each type of substitution is accompanied
by a list of numbers giving the position in the order
of the Boolean variables used to represent the S ex-
pressions. We provide some utilities to help the user
determine a good variable order by subcontracting the
problem to existing verification tools such as the Voss
Verification System [30]. Further details on our ap-
proach can be found in Day [7].

Creating a Boolean abstraction of an S expression
and then reversing the process, can be a useful method
of simplifying expressions that include quantification
over Boolean variables. The resulting expression is
logically equivalent to the original. Our tool provides
a command that evaluates an expression to the de-
sired level of evaluation using SFE, creates a BDD
representation of the expression, and then creates an
S expression from the BDD. We used this process in
constructing a large next state relation by construct-
ing conjuncts representing concurrent states individu-
ally first.

4.4 Distinguishing Current and Next
Values

Specifications written in notations such as finite state
machines describe a next state relation. Since S has
no built-in notion of dynamic behaviour, a means is
required to distinguish the value of a variable in the
current state from its value in the next. Our toolkit
implements three approaches to this problem based on
syntactic conventions.

The first approach is to make each variable a func-
tion mapping system states to values for that variable,
similar to the concept of variables as functions of time.
The approach is well-suited for embedded state tran-
sition notations, where the system state is implicit in
the use of the variable. In this approach, we avoid
the need to group the variables in a record structure
explicitly as has been done in PVS [29].

To support this approach to handling dynamic
behaviour, an element of the toolkit separates the
Boolean variables representing the current state val-
ues from those for next state values after abstraction
to propositional logic. In the semantics for embedded
notations, we adopt the syntactic convention that the
variable cf represents the current state, and cf ′ the
next state, thus a Boolean expression such as x(cf ′)
refers to the value of the variable x in the next state.
Expressions such as y(cf ′) = (y(cf) + 1) that contain
both cf and cf ′ are considered as one Boolean variable
belonging to the next state.

A second approach is to adopt the convention of Z,
where a prime (′) is used to distinguish current state
values from next state values. Thus, in the specifi-

cation (z = g(x, 5)) ⇒ (z′ = g(x, 10)), z = g(x, 5)
refers to the current state because it does not contain
a primed variable. The presence of z′ indicates that
z′ = g(x, 10) is a condition on the next state.

A third approach uses the syntactic convention that
a literal beginning with a lower case letter indicates a
next state predicate. A command can specifically label
a literal as referring to either state, overriding this con-
vention. This mechanism is appropriate in situations
where the vocabulary used to specify next state values
is different from that of specifying current state values,
e.g., some applications of system-level requirements-
based testing [14].

In some cases, the convention used to distinguish
values in time is intrinsically linked to the type of anal-
ysis, and cannot be supported by an independent part
of the toolkit. For example, the test generation pro-
cess guides the rewrite system to distinguish stimuli
from responses, placing expressions in certain forms.

4.5 Interval Checking

The process of abstracting to propositional logic is
very conservative. It abstracts expressions such as
x < 5, (5 ≤ x ∧ x ≤ 10), and 10 < x to unrelated
Boolean expressions, potentially causing the analysis
results to return impossible cases. In this section, we
consider options for avoiding this difficulty. One ap-
proach is to rewrite predicates involving inequalities
into a canonical form to find relationships between ex-
pressions such as x < 5 and 5 > x. However, this fails
to capture the relationship between x < 5 and 10 < x.
A second alternative is to use an external tool to add
constraints based on the numeric relationships [5].

Instead of any of these choices, we chose a simple
approach that was complementary to the process of
abstracting to propositional logic, and that depended
on the structure of the notation. Our approach treats
related expressions that partition a numeric value as
an enumerated type. Based on known structure of
a particular notation, we can identify some related
expressions without a global search of the complete
specification. We encountered linear inequalities in
tabular specifications where the cells of a row of a
table partitioned the values of a numeric expression.

We can identify the row structure within the speci-
fication by searching for the Row keyword used in the
embedding of the tabular notation. To exploit the
structure we extended our tool with a registry mech-
anism such that when certain keywords are encoun-
tered by SFE, particular procedures are carried out.
The Row keyword is associated with a simple “inter-
val checking” algorithm that takes the list of expres-
sions in a row and determines if they represent a non-
overlapping partition. Our registry mechanism makes

it possible to extend easily SFE with other structure-
specific rules.

In our current implementation, interval checking
works for S expressions that contain numeric compar-
ison operators and have a concrete value on at least
one side of the operator. Interval checking also returns
any ranges not used in the row entries. By treating the
partition as an enumerated type, the related numeric
expressions are encoded as related Boolean variables
in the abstraction process.

4.6 Readable Results

A significant challenge in requirements analysis is re-
turning results that are understandable and in the
same terms as the specification despite the abstrac-
tions used in analysis. One step towards this goal is
maintaining the information to reverse the Boolean
abstraction as described in Section 4.3.

We are able to produce even better results by track-
ing information through the expansion and logical ma-
nipulation processes of SFE and rewriting.

4.6.1 Unexpansion

Through an enhancement of the representation of S
expressions, we are able to return an expression in its
unevaluated, and usually more compact, form. Tech-
nically, lazy evaluation replaces a subexpression with
its evaluated form, so the work of evaluation is done
only once for all common subexpressions. We have
modified our representation of expressions to include
a pointer to the original, unevaluated version of the
expression.

At the expense of memory, we are able to keep both
the evaluated and unevaluated forms of the expres-
sions during SFE. Some analysis procedures choose
to output the unevaluated form of the expression to
present a more abstract representation of the output.

4.6.2 Traceability

Unexpansion is not sufficient when manipulations
other than expansion are performed. For analyses that
perform rewriting, it is often critical that the results
be traceable to their source in the specification.

For example, tests generated from a specification
are logical consequences of it. If a test is produced
that represents clearly unintended behaviour, then its
source in the specification needs to be located before
it can be corrected. In the case of a non-trivial in-
put specification, identifying the source of a test can
be surprisingly difficult especially when there is signifi-
cant “collaboration” between individual requirements.

An extension to our parser allows subexpressions
within the S specification to be tagged with user de-

fined identifiers [11]. This use of identifiers is consis-
tent with many requirements specification techniques
now used in industry. During rewriting, the tags are
propagated. By displaying these tags with the analysis
results, the source of the results can be determined.

4.7 Quantification

Our specifications can include quantifiers. In abstrac-
tion, a quantified subexpressions can be treated as a
single Boolean variable for the purpose of automated
analysis. However, we can do better than this con-
servative approach in certain circumstances. The sub-
stitutions described in this section can be done either
during SFE or rewriting, or as a separate function.

For quantified variables of types with a finite num-
ber of members we can substitute the possible values
for the variable, e.g., universal quantification over a
finite set of values can be expanded into a conjunction
of conditions. For example, given the following type
definition and predicate declaration:

: chocolate := Cadburys | Hersheys | Rogers;
tastesGood : chocolate→ bool;

the expression

∀(x : chocolate).tastesGood(x)

can be rewritten as:

tastesGood(Cadburys) ∧
tastesGood(Hersheys) ∧
tastesGood(Rogers)

For quantified variables of infinite or uninterpreted
types, we have experimented with methods for instan-
tiating universally quantified variables. When the an-
tecedent of a logical implication is a universally quan-
tified term, the universally quantified variable can be
instantiated by any uninterpreted constant of the ap-
propriate type. This substitution is a form of pre-
condition strengthening. Because (∀x.P (x)) ⇒ P (a),
we can prove (∀x.P (x)) ⇒ Q by proving P (a) ⇒ Q.
This substitution is useful as part of various analysis
tasks such as completeness and consistency checking.
It transforms constraints on the environment stated
in terms of quantification into a non-quantified form
that can be used in automated analysis. For example,
given the following declarations and definitions,

A,B : flight;

env = ∀(f : flight).
¬(is flying level(f) ∧ is climbing(f));

in a specification, we use the instances of the univer-
sally quantified environmental constraint for A and B,

namely:

¬(is flying level(A) ∧ is climbing(A)) ∧
¬(is flying level(B) ∧ is climbing(B))

We found this form of substitution very useful for en-
vironmental assumptions, which are often stated with
universal quantification.

The approach used in test generation is based on
a test coverage point of view. The user identifies the
type of a quantified variable, treated as a set, as either
static or dynamic. A type is dynamic if it can be
different in different contexts of the specification. For
example, quantification over the “flight” type might
be dynamic, since there can be different numbers of
aircraft within an airspace at any given time. A type
is static if it is not dynamic, e.g., the set of natural
numbers is a static specification element.

When a quantified variable has a type that is a dy-
namic set, we consider what instances of the type
should be analyzed to ensure adequate coverage in
testing. This type of simplification can be performed
in at least three modes: none, single, or all. In the
“single” mode of coverage, for the expression:

∀x : X. P1(x) ∨ P2(x) ∨ . . . ∨ Pn(x)

we substitute a single value of type X, because this
expression can be satisfied if one value has one of the
properties Pi. For example if the type X contains a
value c, the quantified expression above would be re-
placed by P1(c). In the “all” mode, we substitute n
points, each one addressing a different Pi. Any con-
stants introduced must be new, and free in the speci-
fication.

4.8 Codifying Domain Knowledge

Domain knowledge, or environmental assumptions,
are conditions that must be taken into account during
analysis to disregard infeasible combinations of con-
ditions, and simplify expressions. In system-level re-
quirements, we found there are relatively few depen-
dencies between conditions, and therefore these can
be expressed concisely using quantified axioms.

For some types of analysis, domain knowledge can
be combined with the specification in the analysis. It
is the antecedent of the analysis goal, or conjuncted
with the symbolic representation of the state set to
enforce the constraint. In these cases, the substitu-
tion of relevant constants in the quantified expression
described in Section 4.7 proved very useful.

In other types of analysis, such as test generation we
cannot combine the statements of the domain knowl-
edge with the specification because every part of the
output must be traceable to the inputs. For these

cases, we identified three schemata that capture the
form of many of the axioms that are often used:

1. ∀x.G⇒ MutEx[P1(x);P2(x); . . . Pn(x)],

2. ∀x.G⇒ Subsm[P1(x);P2(x); . . . Pn(x)], and

3. ∀x.G⇒ States[P1(x);P2(x); . . . Pn(x)].

These schemata map the problem of simplifying an ex-
pression containing elements that match the patterns
given in the schemata list to the problem of satisfying
the guard G for the same instance of x. For exam-
ple, conditions that form partial orders can be defined
using Subsm. Conditions on the right subsume con-
ditions on the left in the Subsm list. The statement
∀x, y, z.x < y ⇒ Subsm[x < z; y < z] captures the
information that if k < i then i < j ⇒ k < j. The op-
tional guard G, in this case x < y, provides a means of
converting the dependency into a standard domain for
which the analysis tool has a decision procedure. An
expression such as 5 < x∧ 10 < x, is simplified by the
schemata to 10 < x because it can check 5 < 10. The
MutEx form is used to define dependencies between
mutually exclusive conditions. The States form de-
fines conditions that represent a set of states; exactly
one is true. These forms, combined with the pattern-
matching capabilities provided by the rewrite system,
are a powerful method of allowing the user to provide
input to the tool as domain knowledge.

Though we found that the above approaches meet
our needs, they have certain limitations. First, when
there are more dependent relationships dictated by the
environment, a formal model of the environment may
be more concise than just axioms. Second, for more
complex relationships it may be more efficient to pro-
vide a specially coded decision procedure, rather than
pattern matching and basic evaluation to simplify ex-
pressions.

5 Analysis Procedures

The procedures in our toolkit are combined together
to form analysis procedures. In this section, we de-
scribe the procedures we have applied in examples.
Table 1 is a partial list of the commands currently
available in our tool.

5.1 Generating a Satisfying Assign-
ment

To further one’s understanding of the meaning of a
complicated Boolean S expression, it can be useful to
examine a satisfying assignment for that expression.
This analysis procedure first expands any defined sym-
bols in the expression using symbolic functional eval-
uation, and then constructs a Boolean abstraction of

the expression represented as a BDD. The user chooses
the evaluation level for SFE. Using an algorithm found
in the Voss system due to Seger, we provide two pos-
sible ways of producing a satisfying assignment. One
attempts to choose as many true assignments to vari-
ables as possible and the other has preference for false
assignments.

5.2 Symbolic CTL Model Checking

Our model checking procedure takes constants with
definitions that are 1) a CTL formula, 2) a next state
relation, 3) an initial condition, and 4) an optional
environmental constraint. We have a representation
of CTL formula as an S datatype. Internally the ex-
pression representing the CTL formula is decomposed
to invoke procedures based on the definitions of the
component formulae. The next state relation, initial
condition, and environmental constraint are all evalu-
ated using SFE, and abstracted to propositional logic
as a BDD. The current and next state variables are
determined for the next state relation.

We currently have counterexample generation for
AG and EF CTL formulae.

5.3 Simulation

For state machine specifications, a non-exhaustive
form of configuration space exploration is simulation.
The presence of uninterpreted constants in the speci-
fication forces our simulation to be symbolic.

Our analysis procedure does simulation based on
the BDD representing the next state relation and con-
straint satisfaction. The user can constrain the set of
assignments possible for the initial state and each sub-
sequent state using a list of conditions. A particular
assignment to the Boolean variables is chosen at each
step. This assignment becomes the previous config-
uration for the next step. By choosing a particular
assignment each time, this form of simulation does
not encounter the state space explosion problem as in
model checking.

A sequence of steps may not exist that satisfies the
listed conditions. An arbitrary choice of a particular
state that satisfies the constraints made early in the
simulation may result in a satisfying sequence of steps
not being found when one does exist. An alternative,
slightly more expensive, analysis procedure carries out
“one-lookahead”. At each step, it chooses a configu-
ration that satisfies the applicable constraint and has
a next state that satisfies the next constraint in the
list.

Command Action
%setorder <const> use the BDD variable order given by the

expression list <const>
%save_bdd <const> <fname> save a BDD associated with a constant in the file
%load_bdd <const> <fname> load a BDD from the file into constant
%bddsimp <const> <ret_c> simplify <const> using BDDs; put result in <ret_c>
%bddsatisfies <const> using BDDs, provide a satisfying assignment
%ctlmc <ctl> <nsr> <ic> <env> do symbolic CTL model checking given next state relation,

initial condition, and environmental assumption
%simulate <nsr> <c_list> simulate the next state relation by satisfying the

constraint list in each step
%comp <const> <env> do completeness check of a tabular expression
%cons <const> <env> do consistency check of a tabular expression
%sym <const> <env> do symmetry check of a two-parameter tabular expression
%tcg <options> <const> produce test classes and test frames for <const>

Table 1: Analysis Commands

5.4 Completeness, Consistency, and
Symmetry Checking

We use the same criteria as Heimdahl and Leve-
son [19], and Heitmeyer et al. [21] for the complete-
ness and consistency of tabular specifications. Com-
pleteness analysis evaluates the expression consisting
of the disjunction of the table’s rows using SFE. After
Boolean abstraction, we check if the expression is a
tautology. If not, we reverse the abstraction, and use
unexpansion to produce results in a column format,
enumerating the cases that are not covered in the ta-
ble. This presentation is possible because SFE main-
tains the unevaluated versions of expressions, and it
addresses some of the problems identified by Heimdahl
in tracing the source of inconsistencies through nested
tables where the output is completely expanded [18].

A similar procedure is carried out for consistency
checking, where all pairs of columns are checked for
overlap.

For symmetry checking, the analysis procedure con-
structs two versions of a two-parameter table with the
parameters swapped, and checks if the two tables are
the same.

5.5 Test Generation

System-level requirements-based test generation is an
analysis that makes extensive use of rewriting. The
rewrite rules used were verified using HOL. The S
specification is assumed to be a relation between the
stimuli and responses of the system.

After unfolding the specification to the desired
level of detail, the resulting formula is transformed
into its logically equivalent Test Class Normal Form
(TCNF) [10, 13]. The TCNF is a conjunction of test

classes, which describe particular stimulus/response
behaviours as implications with the stimuli in the an-
tecedent and responses in the consequent.

The antecedents of the test classes are rewritten fur-
ther to reduce the size of quantified subexpressions.
Choices (disjuncts) within an antecedent represent dif-
ferent test descriptions, referred to as test frames. A
test frame is a test class that has no choice in the
antecedent (other than instantiation). Domain knowl-
edge is applied to simplify the test frames, and remove
any that are infeasible.

Test frames are the results of the analysis, and are
logical consequences of the given specification. Test
frames are selected to cover the Boolean function rep-
resented by the test class antecedent using BDDs. The
selection of test frames is determined by one of several
coverage criteria chosen by the user.

6 Conclusions

We have described a lightweight approach for applying
automated analysis techniques to higher-order logic
specifications. To support this approach we have cre-
ated utilities that manipulate higher-order logic ex-
pressions in truth-preserving ways. These utilities
handle the features of a logic, such as uninterpreted
constants and quantification, in evaluation and ab-
straction.

We have demonstrated that a common core of utili-
ties allows us to implement diverse analysis procedures
such as test generation, and model checking. The com-
mon toolkit facilitates re-use of code and extension
of the suite of analysis procedures with new methods
such as symmetry checking and constraint-based sim-
ulation. We have also shown methods particular to

embedded notations can be created such as the com-
pleteness and consistency analysis of tables.

Two other innovations of our approach are: we allow
users to control performance factors such as BDDs in
terms of the language of the specification; and through
the analysis process we maintain information that pro-
duces readable, traceable results in the language of the
specification.

Space does not permit us to describe the real-world
examples that we have specified and analyzed using
our tools. Examples include an aeronautical telecom-
munications network (ATN) [2, 7], a separation min-
ima for aircraft [9, 12], a small heating system [7], a
steam boiler control system [13], and parts of a pro-
prietary air traffic management system [14]. These
examples are non-trivial. For example, the parame-
terized formal ATN statechart specification is approx-
imately 43 pages. The expanded S representation of
the ATN next state relation consists of 52 076 nodes
in a canonical form.

In the future, we would like to explore how other
automated abstraction techniques can be used in our
framework. For example, less conservative results can
be achieved by abstracting to a variant of first-order
logic. We would like to explore decomposition strate-
gies to lessen the state space explosion problem. Our
approach, which uses the same specification language
as a high-powered tool where these strategies can be
verified, allows experts to hard code their verification
method to make it accessible to non-experts.

7 Acknowledgments

The first author is supported by Intel, NSF (EIA-
98005542), USAF Air Materiel Command (F19628-
96-C-0161), and the Natural Science and Engineer-
ing Research Council of Canada (NSERC). This
paper is based on results produced by the for-
malWARE research project supported by the BC
Advanced Systems Institute, Raytheon Systems
Canada, and MacDonald Dettwiler. Details on
the formalWARE research project can be found at
http://www.cs.ubc.ca/formalWARE.

References

[1] Mark D. Aagaard, Robert B. Jones, and Carl-
Johan H. Seger. Lifted–FL: A pragmatic imple-
mentation of combined model checking and theo-
rem proving. In TPHOLs, number 1690 in LNCS,
pages 323–340. Springer, 1999.

[2] J. H. Andrews, N. A. Day, and J. J. Joyce. Us-
ing a formal description technique to model as-

pects of a global air traffic telecommunications
network. In FORTE/PSTV, 1997.

[3] Myla M. Archer, Constance L. Heitmeyer, and
Stever Sims. Tame: A PVS interface to simplify
proofs for automata models. In User Interfaces
for Theorem Provers, 1998.

[4] Randal E. Bryant. Graph-based algorithms for
Boolean function manipulation. IEEE Trans. on
Comp., C-35(8):677–691, August 1986.

[5] William Chan, Richard Anderson, Paul Beame,
and David Notkin. Combining constraint solving
and symbolic model checking for a class of sys-
tems with non-linear constraints. In CAV, volume
1254 of LNCS, pages 316–327, 1997.

[6] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Au-
tomatic verification of finite-state concurrent sys-
tems using temporal logic. ACM Transactions on
Programming Languages and Systems, 8(2):244–
263, April 1986.

[7] Nancy A. Day. A Framework for Multi-Notation,
Model-Oriented Requirements Analysis. PhD
thesis, Dept. of Comp. Sci, Univ. of British
Columbia, 1998.

[8] Nancy A. Day and Jeffrey J. Joyce. Symbolic
functional evaluation. In TPHOLs, volume 1690
of LNCS, pages 341–358. Springer, 1999.

[9] Nancy A. Day, Jeffrey J. Joyce, and Gerry Pel-
letier. Formalization and analysis of the sepa-
ration minima for aircraft in the North Atlantic
Region. In Lfm, pages 35–49. NASA Conference
Publication 3356, September 1997.

[10] Michael R. Donat. Automating formal
specification-based testing. In TAPSOFT,
volume 1214 of LNCS. Springer, April 1997.

[11] Michael R. Donat. Automatically generated test
frames from a Q specification of ICAO flight plan
form instructions. Technical Report 98-05, Dept.
of Comp. Sci, Univ. of British Columbia, April
1998.

[12] Michael R. Donat. Automatically generated test
frames from an S specification of separation min-
ima for the North Atlantic Region. Technical Re-
port 98-04, Dept. of Comp. Sci, Univ. of British
Columbia, April 1998.

[13] Michael R. Donat. A Discipline of Specification-
Based Test Derivation. PhD thesis, Depart-
ment of Computer Science, University of British
Columbia, 1998.

[14] Michael R. Donat and Jeffrey J. Joyce. Apply-
ing an automated test description tool to testing
based on system level requirements. In INCOSE,
1998.

[15] Steve Easterbrook and John Callahan. Formal
methods for V & V of partial specifications:
An experience report. In RE, pages 160–168, An-
napolis, MD, 1997.

[16] M.J.C. Gordon and T.F. Melham, editors. In-
troduction to HOL. Cambridge University Press,
1993.

[17] David Harel. Statecharts: A visual formalism for
complex systems. Science of Computing, 8:231–
274, 1987.

[18] Mats P. E. Heimdahl. Experiences and lessons
from the analysis of TCAS II. In ISSTA, pages
79–83, January 1996.

[19] Mats P.E. Heimdahl and Nancy G. Leveson.
Completeness and consistency in hierarchical
state-based requirements. IEEE Trans. on Soft.
Eng., 22(6):363–377, June 1996.

[20] Constance Heitmeyer, James Kirby, Bruce
Labaw, and Ramesh Bharadwaj. SCR*: A
toolset for specifying and analyzing software re-
quirements. In CAV, volume 1427 of LNCS, pages
526–531. Springer, 1998.

[21] Constance L. Heitmeyer, Ralph D. Jeffords, and
Bruce G. Labaw. Automated consistency check-
ing of requirements specifications. ACM Transac-
tions on Software Engineering and Methodology,
5(3):231–261, July 1996.

[22] Alan J. Hu, David L. Dill, Andreas J. Drexler,
and C. Han Yang. Higher-level specification and
verification with BDDs. In CAV, volume 697 of
LNCS. Springer, 1993.

[23] J. Joyce, N. Day, and M. Donat. S: A machine
readable specification notation based on higher
order logic. In International Workshop on the
HOL Theorem Proving System and its Applica-
tions, pages 285–299. Springer, 1994.

[24] J. Joyce and C-J. Seger. Linking BDD-based sym-
bolic evaluation to interactive theorem-proving.
In DAC. IEEE Computer Press, 1993.

[25] Jeffrey Joyce. Multi-Level Verification of Micro-
processor Based Systems. PhD thesis, Cambridge
Comp. Lab, 1989. Technical Report 195.

[26] Kenneth L. McMillan. Symbolic Model Check-
ing. PhD thesis, Carnegie Mellon University, May
1992.

[27] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and
M. Srivas. PVS: Combining specification, proof
checking, and model checking. In CAV, volume
1102 of LNCS, 1996.

[28] S. Owre, J.M. Rushby, and N. Shankar. PVS: A
prototype verification system. In CADE, volume
607 of LNCS, pages 748–752, 1992.

[29] P. Sreeranga Rajan. Transformations on Data
Flow Graphs: Axiomatic Specification and Effi-
cient Mechanical Verification. PhD thesis, Dept.
of Comp. Sci, Univ. of British Columbia, 1995.

[30] Carl-Johan H. Seger. Voss - a formal hardware
verification system: User’s guide. Technical Re-
port 93-45, Dept. of Comp. Sci, Univ. of British
Columbia, December 1993.

[31] N. Shankar, S. Owre, J. M. Rushby, and D.W. J.
Stringer-Calvert. PVS prover guide, September
1999. Version 2.3.

[32] Natarajan Shankar. Efficiently executing PVS.
Draft Final Report for NASA Contract NAS1-
20334, Task 11. Computer Science Laboratory,
SRI International, November 30, 1999. (also see
http://pvs.csl.sri.com/experimental/eval.html).

[33] J.M. Spivey. Understanding Z. Cambridge Uni-
versity Press, Cambridge, 1988.

[34] John P. Van Tassel. A formalization of the VHDL
simulation cycle. In Higher Order Logic Theo-
rem Proving and its Applications, pages 359–374.
North-Holland, 1993.

[35] P. J. Windley. The Formal Verification of
Generic Interpreters. PhD thesis, University of
California , Davis, 1990.

